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The sedimentation of fibre suspensions at low Reynolds number is studied using two
different, but complementary, numerical simulation methods: (1) Monte Carlo
simulations, which consider interparticle hydrodynamic interactions at all orders
within the slender-body theory approximation (Mackaplow & Shaqfeh 1996), and (ii)
dynamic simulations, which consider point–particle interactions and are accurate for
suspension concentrations of nl $i 1, where n and l are the number density and
characteristic half-length of the fibres, respectively. For homogeneous, isotropic
suspensions, the Monte Carlo simulations show that the hindrance of the mean
sedimentation speed is linear in particle concentration up to at least nl $¯ 7. The speed
is well predicted by a new dilute theory that includes the effect of two-body
interactions. Our dynamic simulations of dilute suspensions, however, show that
interfibre hydrodynamic interactions cause the spatial and orientational distributions
to become inhomogeneous and anisotropic. Most of the fibres migrate into narrow
streamers aligned in the direction of gravity. This drives a downward convective flow
within the streamers which serves to increase the mean fibre sedimentation speed. A
steady-state orientation distribution develops which strongly favours fibre alignment
with gravity. Although the distribution reaches a steady state, individual fibres
continue to rotate in a manner that can be qualitatively described as a flipping between
the two orientations aligned with gravity. The simulation results are in good agreement
with published experimental data.

1. Introduction

Sedimenting suspensions exist in many natural and man-made systems. Examples
include the movement of pollution in the atmosphere (e.g. acid rain), clarification of
wastewater, and the production of fibre composites. Additionally, analysis of the
sedimentation behaviour of red blood cells (ESR) is used as a diagnostic medical tool
(Reinhart, Singh & Werner 1989). However, despite the universality of particle
sedimentation, there are still many unanswered fundamental questions regarding it.

The mobilities of isolated sedimenting particles can be determined theoretically or
experimentally. However, even at relatively low concentrations, the effect of particle
interactions on the sedimentation speed becomes significant. For example, in a fluid
containing a 3% volume fraction of spheres, the interparticle hydrodynamic
interactions reduce the mean sphere sedimentation speed nearly 20% (Batchelor 1972) ;
for elongated bodies, interactions become important at even lower concentrations

† Present address : PPD Process Development Center, Abbott Laboratories, Dept. 4P8, Bldg.
R1B, 1401 Sheridan Road, North Chicago, IL 60064-4000, USA.



150 M. B. Mackaplow and E. S. G. Shaqfeh

(Turney et al. 1995). These strong effects occur because the influence of one
sedimenting particle on the velocity of another decays slowly, as 1}r (Batchelor 1972;
Ladd 1990), where r is the distance between the two bodies. Even for a given
concentration, a suspension’s sedimentation behaviour will strongly depend on the
particle centre-of-mass distribution. This distribution is generally not known. It is
simplest to assume the suspension is homogeneous throughout the settling process
(Batchelor 1972). Theoretical studies have suggested this is a good assumption for
spheres, but not for fibres (Koch & Shaqfeh 1989).

For our subsequent discussion and later numerical analysis, we restrict ourselves to
sedimenting, periodic suspensions meeting the following set of conditions: (i) both the
particle and fluid Reynolds numbers are much less than unity, so inertia can be
neglected; (ii) the particle Pe! clet number is much greater than unity, so Brownian
forces can be neglected; (iii) the only external body force acting on the particles is
gravity ; (iv) the only interparticle interactions are hydrodynamic (e.g. no electrostatic
forces).

Because they are isotropic bodies, sedimenting suspensions of spheres are the
simplest system to study. Much early experimental work focused on developing
correlations for the mean sedimentation speed of monodisperse sphere suspensions as
a function of concentration. Such investigations predicted the form of the hindrance
function, f(φ), defined by ©Uª}U

sphere
3 f(φ), where ©Uª is the mean sphere

sedimentation speed, U
sphere

is the sedimentation speed of an isolated sphere, and φ is
the volume fraction of spheres in the suspension (Richardson & Zaki 1954; Barnea &
Mizrahi 1973). Early theoretical attempts to take into account interparticle
interactions, and thus predict f(φ) a priori, used cell models (Barnea & Mizrahi 1973).
All such models predict hindrance functions of the form

f(φ) 1®Ο(φ"/$) (1.1)

which is the same form as that for a dilute periodic array of spheres (Hasimoto 1959).
In contrast, Batchelor (1972) explicitly considered the effect of two-body interactions
on the mean sedimentation speed in a dilute suspension of spheres. By assuming that
the sedimenting suspension was random and homogeneous, he determined that

f(φ)¯ 1®6.55φ­O(φ#) (1.2)

for φi 1. Equation (1.2) shows that for φi 1 the effect of interparticle interactions is
much less in disordered suspensions than that predicted by cell models. Since this early
work, there have been many further experimental, theoretical, and numerical studies
of sedimenting suspensions of spheres. A review article by Davis & Acrivos (1985)
summarizes many of the discoveries. Some discussion of developments following the
aforementioned review is given by Nicolai et al. (1995). Our purpose is not to give a
detailed overview of scientific advances concerning the understanding of the
sedimentation of suspensions of spheres. We wish to merely point out that there has
been significant progress toward ultimately understanding this process.

On the other hand, the sedimentation behaviour of suspensions of fibres (or non-
spherical particles in general) is much more complicated and has received much less
attention. Insight into these additional complications can be gained by first examining
the equation for the sedimentation velocity of a single, isolated prolate spheroid under
Stokes’ flow conditions (Oberbeck 1876; Happel & Brenner 1965)
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where A is spheroid aspect ratio,
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∆ρ is the density difference between the fibre and the surrounding fluid, V
P

is the
volume of the spheroid, g is the gravitational constant, gW is the unit vector in the
direction of gravity, η

!
is fluid viscosity, l is the half-length of the long axis, and p is

the spheroid orientation.
Clearly, the sedimentation speed is a function of the particle orientation relative to

gravity. Since α
!

and α
"

are always positive, the speed is largest when the particle is
aligned with gravity and slowest when perpendicular to it. The difference in the
sedimentation speeds at the two extremes of orientation increases with particle aspect
ratio. The variation of sedimentation speed with orientation is not limited to particles
of spheroidal shape. In particular, for a fibre of any shape we can use slender-body
theory as developed by Batchelor (1970) to show that the sedimentation velocity is
given by
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where C
"
and C

#
are O(1) constants that are functions of the body shape. For prolate

spheroids, C
"
¯ 1}2 and C

#
¯®3}2. For cylinders, C

"
¯ 0.193 and C

#
¯®1.807. The

ratio of the maximum and minimum fall speeds asymptotically approaches 2 in the
limit of infinite aspect ratio. The variation of fall speed with orientation is substantial
even for moderate aspect ratio bodies. For example, there is more than a 40%
variation for spheroids with an aspect ratio of 10. Since the effect of a sedimenting
particle on the angular velocity of another particle is long-ranged, decaying as 1}r#

(Ladd 1990), this distribution is influenced by particle interactions. Indeed, the
orientation distribution is indeterminate without knowledge of the hydrodynamic
interactions.

The coupling between hydrodynamic interactions and orientation distributions is
particularly interesting at dilute concentrations, defined as nl $!O(1), where n is the
fibre number density and l is the fibre half-length. At such concentrations, the
instantaneous effect on the velocity of a given fibre by the other fibres is only O(nl $).
However, since the interactions also cause particle rotations, they indirectly have an
O(1) effect on the velocity. Additionally, unlike spheres at such concentrations (Ham
& Homsy 1988), the individual fibres will have substantial motion perpendicular to
gravity. This ‘drift velocity ’ depends strongly on fibre orientation and increases with
aspect ratio. For spheroids with an aspect ratio of 10, it may be as high as 20% of the
sedimentation speed. The fact that interfibre hydrodynamic interactions have an O(1)
effect on both the drift velocities and sedimentation speeds of individual bodies
suggests that, compared to a sedimenting suspension of spheres, spatial inhomo-
geneities are more likely to form. In fact, inhomogeneities in sedimenting
suspensions of non-Brownian fibres have recently been witnessed in the laboratory
(Herzhaft et al. 1996) and we shall refer to these results throughout the present study.

Quite possibly due to the aforementioned complexities, there have been few
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fundamental studies of fibre sedimentation. Kuwabara (1959) proposed a cell model to
determine the sedimentation velocity of suspensions of fibres oriented perpendicular to
gravity. However, since cell models fail to predict the proper scaling of the hindered
settling function with concentration for spheres, as discussed earlier, it is not clear that
they will be successful for suspensions of fibres. Koch & Shaqfeh (1989) studied the
effect of two-particle interactions on the centre-of-mass pair probability distribution
function in dilute suspensions. Their analysis shows that these interactions cause an
increase in the density of particles around a sedimenting particle. Moreover, they
completed a linear stability analysis showing that a homogeneous suspension of fibres,
unlike a suspension of spheres, is unstable to density fluctuations. Their analysis also
suggests that the sedimenting suspension should segregate into vertical streamers,
regions of high particle density where hydrodynamic interactions cause a relatively
strong downward convection of particles and fluid, and regions of low particle density
where most of the fluid motion is opposite to the direction of gravity.

Claeys & Brady (1993c) used Stokesian Dynamics numerical simulations to study
the sedimentation of periodic arrays of spheroids. These provide valuable information
about hydrodynamic interactions in crystalline systems. However, for the reasons
mentioned earlier, it is not clear that the scaling of sedimentation velocity with
concentration in such systems will be the same as that in a disordered suspension.
Additionally, they do not provide information about how hydrodynamic interactions
affect the centre-of-mass and orientation distributions.

Experimental studies (Anselmet 1989; Kumar & Romarao 1991; Turney et al. 1995)
have mainly focused on measuring the fall speed of the suspension interface, and
assumed this to be the mean particle sedimentation speed. In sedimenting sphere
suspensions, this interface is sharp (Davis & Acrivos 1985) and its fall speed
approximates the mean particle sedimentation speed (Davis & Hassen 1988). In
contrast, in a sedimenting fibre suspension, it is not sharp (Turney et al. 1995), nor is
there any evidence that the fall rate of this ‘ interface’, for any particular definition, is
the same as the mean fibre sedimentation speed. Nonetheless, these experimental
studies give us qualitative information about sedimenting fibre suspensions.

Turney et al. (1995) chose to examine the position of the interface where the fibre
concentration was half that of the initial concentration. Their results showed the mean
sedimentation speed decreasing with increasing concentration. Anselmet (1989)
performed similar experiments. The two experimentally determined hindrance
functions can be compared as a function of nl $, since this is the relevant concentration
for determining the extent of fibre interactions (Mackaplow, Shaqfeh & Schiek 1994;
Mackaplow & Shaqfeh 1996). The results of Anselmet (1989) show a greater reduction
in sedimentation speed as a function of nl $ than those of Turney et al. (1995), although
the discrepancy decreases with increasing concentration. As hypothesized by Turney et
al. (1995), this discrepancy is consistent with the postulate that Anselmet (1989) used
a sedimentation cell whose linear dimension in directions perpendicular to gravity was
so small that the walls seriously affected the results. Similar experimental results were
presented by Kumar & Ramarao (1993). Curiously, they found that the sedimentation
speed dropped abruptly, and nearly vanished, at suspension volume fractions
(independent of aspect ratio) greater than 0.015.

In contrast to previous experimental studies, Herzhaft et al. (1996) directly tracked
the position and orientation of individual fibres in a dilute (nl $! 1) sedimenting
suspension. The fibre orientation distribution evolves to strongly favour alignment
with gravity. Individual fibres undergo flipping motions between the two orientations
aligned with gravity. Fibre clustering was observed, which is qualitatively consistent
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with the predictions of Koch & Shaqfeh (1989). This clustering created an increase in
the mean sedimentation speed; an increase which was greater than that which could be
accounted for by the change in the orientation distribution.

In summary, most existing experimental studies have estimated the mean
sedimentation speed in a fibre suspension by the movement of the suspension}clear
fluid interface. It is not known if this is a valid approximation. A more detailed study
by Herzhaft et al. (1996), albeit at more dilute fibre concentrations, has yielded results
that showed complicated physical behaviour, including suspension inhomogeneities.
Existing theoretical work is qualitative and very limited, although it is in rough
agreement with experimental results for non-dilute suspensions. Numerical methods
have not been used to study disordered fibre suspensions.

We use numerical simulations to investigate the effect of hydrodynamic interactions
on the sedimentation speed, orientation distribution, and positional configuration in
an initially disordered sedimenting fibre suspension. Simulations have the advantage
of allowing us to vary precisely the system parameters and examine more detailed
transient data than is practically possible in an experimental system. In §2 we present
Monte Carlo simulations. Fibres are represented as line distributions of Stokeslets in
a periodic box. All fibre interactions are considered within the slender-body theory
approximation. In isotropic suspensions, the hindrance of the mean particle
sedimentation speed is linear in particle concentration at concentrations up to at least
nl $¯ 7. The hindrance function is well predicted by the dilute theory corrected for the
effects of two-body interactions, which is developed in Appendix C, and is in good
agreement with the experimental results of Turney et al. (1995).

In §3 we present dynamic point particle simulations. In these simulations, each fibre
is represented as point force whose mobility depends on its orientation. We verify the
ability of these simulations to correctly capture fibre–fibre interactions at low
concentrations by comparison with the aforementioned Monte Carlo simulations. The
dynamic simulations predict that the orientation distribution in a dilute sedimenting
suspension will evolve to favour orientations aligned with gravity. The suspension also
becomes inhomogeneous, with most of the fibres migrating to form narrow streamers
aligned in the direction of gravity. This agrees with the theoretical prediction of Koch
& Shaqfeh (1989). As a result of this inhomogeneity, the mean sedimentation speed
increases beyond that which can be attributed to the effect of the changing orientation
distribution. Individual fibres undergo flipping motions, where a fibre spends most of
its time in one of two orientations nearly aligned with gravity, while occasionally
rapidly flipping between these two. The simulation results agree with the experimental
work of Herzhaft et al. (1996).

2. Monte Carlo simulations

2.1. Mathematical formulation of the problem and solution of the go�erning equations

In this section we present the formulation and method of solution of the governing
equations for our Monte Carlo simulations. This development is nearly identical to
that used in our study of the rheological properties of fibre suspensions (Mackaplow
& Shaqfeh 1996). Thus, only an overview of the development and the differences
between the two formulations will be presented.

Consider an inertialess, monodisperse suspension of rigid, non-Brownian, fibres in
a Newtonian fluid. The fibres have a length of 2l, a characteristic width of 2b, and a
density that is ∆ρ greater than that of the surrounding fluid. Following Batchelor
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(1970), slender-body theory can be used to represent the disturbance velocity created
by a fibre, �D(x), as an integral of Stokeslets, F(s) distributed along the fibre axis,

�D(x)¯ �(x)®�¢(x)¯&F(s)[H(x®x
c
®sp) ds¬(1­O(b}h)). (2.1)

H(x) is the Oseen tensor, i.e. (δ}rxr­xx}rxr$)}8πη
!
, h is the distance of x from the

major axis of the fibre, �¢(x) is the undisturbed velocity field, and x
c
and p are the fibre

centre position and orientation vector, respectively. F(s) can be related to the flow field
experienced by a fibre using the method of matched asymptotic expansions (Batchelor
1970), namely
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considered. The velocity of the fibre and its angular velocity about its centre are
denoted by U and Ω, respectively, and bW (s) is related to the local perimeter of the fibre
cross-section, as discussed in detail by Batchelor (1970). The axial singularity
distributions on each fibre must also satisfy
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(2.4)

The first equation states that each fibre exerts a force on the surrounding fluid equal
to the gravitational body force that acts on it ; the second states that no fibre is acted
upon by an external torque. Combining (2.2), (2.3), and (2.4), yields a coupled set of
integral equations. These equations can be non-dimensionalized using the characteristic
fibre velocity and Stokeslet strength, (rgrV

p
∆ρ)}(8πη

!
l ) and rgrV

p
∆ρ}l, respectively, and

then they can be solved to determine the velocity, angular velocity, and the strength of
the singularity distribution on each fibre.

If we let h in equation (2.1) be the average interfibre spacing for a semidilute
suspension, we find that the error introduced into the fibre interactions by the slender-
body theory approximation is O(φ"/#). Thus, at suspension concentrations up through
semidilute, the majority of fibre interactions are well approximated by the slender-body
theory approximation. However, even at such concentrations, close hydrodynamic
interactions occur that are not accounted for by slender-body theory. In particular,
although we have omitted the details, it can be shown that when two fibres with
dissimilar orientations have a closest approach within O(b lnA}A), the hydrodynamic
lubrication force interaction alters the sedimentation speed of each fibre by an O(1)
amount. However, the probability that any given fibre in a semidilute suspensions will
experience such an interaction is only O(φ lnA) (Doi & Edwards 1989; this is based on
an isotropic orientation distribution, which for a random centre of mass maximizes the
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probability of such an interaction occurring). Thus, the error introduced into the mean
fibre sedimentation speed by neglecting lubrication interactions is O(φ lnA), which is
i 1 for the suspensions we consider.

Equations (2.2), (2.3), and (2.4), model interactions among N fibres in an unbounded
suspension. In order to model an infinite suspension, we use periodicity to replicate the
N fibres in a unit cell throughout space. To determine the field disturbances created at
any point in space due to a periodic distribution of Stokeslets we use the periodic
solution of the Stokes flow equations, H

P
(x), developed by Hasimoto (1959). This

introduces a pressure gradient that opposes the flow created by the Stokeslets. This
procedure renders the summation of divergent and conditionally convergent
singularities well behaved. It has been used in Stokesian Dynamics simulations and is
discussed in detail by Brady et al. (1988), Claeys & Brady (1993a–c), and references
therein. Making use of H

P
(x), the periodically extended version of (2.2) becomes
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Equations (2.3), (2.4), and (2.5), can be solved to find the velocity, angular velocity, and
Stokeslet distribution of each fibre in the periodically extended suspension. Our
formulation is conceptually similar to the Stokesian dynamics simulations that have
been used by Claeys & Brady (1993a–c) to simulate suspensions of spheroids. In both
formulations, all particle interactions are related through a mobility tensor. The main
difference is that we represent our fibers as line distributions of singularities, as
opposed to multipoles at the centre of the body, essentially retaining all terms in the
multipole expansion along the fibre axis. We do not include lubrication interactions.
Additionally, we do not need to know the Faxe!n’s law relationships for the body
shapes. Our formulation is therefore very suitable for studying large-aspect-ratio
bodies at concentrations up through semidilute, but less suitable for bodies of
moderate aspect ratio or suspensions where lubrication interactions are important
(Mackaplow & Shaqfeh 1996).

In order to solve the governing equations, we first discretize the integrals using
Gauss–Legendre quadrature. Physical system parameters (fibre shape, aspect ratio,
orientation distribution, and volume fraction) and the unit cell parameters (shape and
number of fibres) are specified and used to generate random, non-overlapping fibre
positions and orientations. The algorithm to do this, as well as tests to verify that the
proper orientation distributions are generated, are discussed in detail by Mackaplow &
Shaqfeh (1996). This reduces the discretized versions of equations (2.3), (2.4), and (2.5)
to a set of N¬(3M­5) linear equations and unknowns. The unknowns for each fibre
are three components of F(s) at each of the M discretization points, three components
of U, and two components of Ω (there are only two linearly independent components
of angular velocity because the slender-body theory approximation neglects variations
in the velocity along fibre cross-sections). The system of equations is solved by an LUD
(Lower Upper Diagonal) matrix decomposition algorithm. A typical simulation with
M¯ 13 and 100 spheroidal inclusions in a cubic unit cell required about 5 minutes of
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CPU time on a CRAY C90 supercomputer. For each set of physical parameters, the
equations were solved for 10–20 different particle configurations and the results were
ensemble averaged.

The present formulation cannot be used to directly simulate suspensions of
cylindrical fibres, the fibre shape most commonly used in experimental studies. This is
because the slender-body theory approximation is not valid near the ends of cylinders,
resulting in a numerical instability that propagates throughout the entire solution
vector. Mackaplow et al. (1994) studied the mathematically analogous problem of
determining the thermal conductivity of a suspension of highly conducting fibres. By
retaining higher-order terms in the slender-body theory approximation and neglecting
the O(b) regions at the end of the fibres they were able to get numerically convergent
solutions for both spheroidal and cylindrical fibres. Although body shape had a
quantitative effect on the results, they found that for both body shapes the effect of
interfibre interactions was qualitatively similar and mainly a function of nl $. The
simulations of fibre sedimentation we present in this section all used spheroidal fibres,
since this shape does not give rise to numerical difficulties. However, based on the
above, we believe the results are relevant to systems of cylindrical fibres providing nl $

and fibre aspect ratio are held constant.
The goal of our simulations is to determine the properties of disordered suspensions.

Although the fibres in each unit cell are disordered, the system is ordered on the length
scale of the unit cell. Since the behaviour of each fibre will be most greatly influenced
by the fibres closest to it, the larger the periodic box, for a given suspension
concentration, the better we expect our model to approximate the behaviour of a true
disordered system. For our studies of the thermal conductivity (Mackaplow et al.
1994), and rheology (Mackaplow & Shaqfeh 1996) of fibre suspensions, we were always
able to make our unit cells sufficiently large that the properties of the suspension were
independent of cell size. However, for given suspension concentrations, similar cell
sizes did not yield cell-size-independent sedimentation velocities and angular speeds.
Since the computational effort per simulation, for a given suspension concentration,
C (box size)* (because the number of particles}box, N, C (box size)$, and the number
of calculations for the matrix inversionCN $) computing limitations prevented us
from making our unit cells much larger.

The reason for this difficulty was discussed by Phillips, Brady & Bossis (1988). They
showed that the finite box size effects on the suspension viscosity are at most O(N−"),
thus decaying rapidly with cell size. In contrast, the effect on sedimentation speed is
O(N−"/$), and thus decays very slowly. In Appendix A, based on the work of Phillips
et al. (1988) and Ladd (1990), we develop an analytic finite box size effect correction
for the velocity of isotropic fibres sedimenting in cubic unit cells
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U(N ) and U are the particle velocity as measured in an N-particle unit cell and the
velocity if the same particle resided in a disordered suspension, respectively; C

"
and C

#
are O(1) constants that are functions of body shape (see equation (1.4)) ; h is the unit
cell length; η}η

o
is the ratio of the suspension viscosity to that of the pure fluid, which

may be determined using the results of Mackaplow & Shaqfeh (1995) ; and a is a
constant that depends on the unit cell lattice. We have assumed that g¯ rgr3 and 1 and
2 are orthogonal unit vectors in the directional perpendicular to gravity. Equation (2.6)
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F 1. Mean sedimentation speed of an isotropic suspension of particles. Numerical simulations
(spheroids, aspect ratio¯ 15.6) and the experimental results of Turney et al. (1995) (cylinders, aspect
ratio¯ 17³4) are plotted as a function of nl $.

makes use of a two-term asymptotic expansion for the mobility of a periodic array of
fibres that is developed in Appendix B. As discussed by Phillips et al. (1988) and in
Appendix A, the finite box size effects on the rotational mobility decay as (l}h)$, which
is much more rapid than the decay of the translational mobility effects. However,
because of the elongated nature of the fibres and the computational limits on the
number of fibres that can be simulated, except at very dilute concentrations, h}lC
O(1). Thus it is of interest as to how to shape the unit cell to minimize such effects. In
Appendix A we show that this can be done by using a unit cell that is elongated in the
direction of the preferred fibre orientation.

2.2. Results and discussion

We used 100 spheroidal fibres}unit cell in all of the following Monte Carlo simulations.
Unless otherwise stated, the fibre orientation distribution was isotropic and the cell was
cubic. Individual fibre sedimentation velocities were corrected for finite box size effects
using equation (2.6). For the first set of simulations we will present, the suspension
viscosity required for the correction was obtained from the numerical results of
Mackaplow & Shaqfeh (1996) ; for the last set, it was estimated using the dilute theory
corrected for two-body interactions, presented by the same authors, which they found
to be very accurate over the concentration range we consider. Mean sedimentation
speeds are compared to those in dilute, isotropic suspensions, which, using equation
(1.4), can be shown to be
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A dilute theory that takes into account two-body interactions, which is developed in
Appendix C,
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is also presented.
In figure 1 we have compared our simulations of the mean sedimentation speed of
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F 2. Mean sedimentation speed of an isotropic suspension of prolate spheroids with an aspect
ratio of 100 as a function of concentration. Shown are the dilute theory (solid line), the dilute theory
with two-body interactions (dotted line), and simulated results (both with and without corrections for
finite box size effects, equation (A11)). The error bars are 95% confidence intervals. (a) Dilute
concentrations ; (b) non-dilute concentrations.

a suspension of fibres with an aspect ratio of 15.6 to the experimental results of Turney
et al. (1995). Since the experimental investigators used cylindrical fibres, the two sets
of data are compared for common values of nl $, not φ. This is based on the dilute
theory corrected for two-body interactions, equation (2.8), which shows that nl $ is the
concentration parameter that determines interactions. The agreement between
experiments and simulations is qualitatively and quantitatively quite good. Both show
the mean sedimentation speed decreasing with increasing suspension concentration.
The reduction, relative to the dilute theory, ranges from E 30% at nl $¯ 1 to E 75%
at nl $¯ 5. However, as mentioned previously, these experiments assume that (i) the
mean sedimentation speed in the suspension is equal to that of the upper
suspension}fluid interface, and (ii) the suspension remains homogeneous and isotropic
for the duration of the experiment. Turney et al. (1995) have not tested these
assumptions.Additionally, formost of the data presented, nl $"A}(2π) andφ"/#-O(1).
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F 3. Mean angular speed of suspensions of prolate spheroids with an aspect ratio of 100 as
a function of orientation distribution and concentration.

At such concentration the slender-body theory approximation underestimates
the effect of fibre interactions (Mackaplow & Shaqfeh 1996, §2.1). Thus, the
particularly good quantitative agreement between the simulations and experiments
must be considered somewhat fortuitous. Nonetheless, we believe that figure 1 shows
that our simulations are capturing the important physics in sedimenting suspensions.

Figure 2 shows the simulated mean sedimentation speed of a suspension of fibres
with an aspect ratio of 100 as a function of concentration. Part (a) demonstrates that
simulation results not corrected for finite box size effects show a systematic negative
deviation from the dilute theory, even for suspension concentrations of nl $iO(1). The
data presented in part (b) suggest that the uncorrected, non-dimensionalized
sedimentation speeds C 1®O(nl $)w, where w! 1. Both these observations are
consistent with the predicted finite box size effects discussed in §2.1 and Appendix A.
The results corrected for finite box size effects presented in figure 2 show the mean
sedimentation speed of the suspension decreasing approximately linearly with
concentration up to at least nl $¯ 7, the highest concentration simulated. The results
are in excellent quantitative agreement with the dilute theory that corrects for two-
body interactions, equation (2.8), even for nl $" 1, where we expect multibody
interactions to be important. A similar result has been found in studies of fibre
suspension thermal conductivity (Mackaplow et al. 1994) and rheological behaviour
(Mackaplow & Shaqfeh 1996).

Figure 3 shows the mean fibre angular speed in a sedimenting suspension of fibres
with an aspect ratio of 100 as a function of concentration and orientation distribution.
We have considered isotropic distributions and those aligned both parallel and
perpendicular to gravity. For aligned suspensions, the unit cells were dilated by a factor
of 6 in the direction of fibre alignment. This was done to minimize finite box size effects
on fibre rotation, as suggested by the analysis of Appendix A. We have only shown
data for nl $% 0.1, since for these dilute suspensions the periodic boxes will be largest,
and thus the finite box size effects smallest. Figure 3 shows that the average fibre
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F 4. The mean magnitude of the components of the particle angular velocity vector
perpendicular to and in the plane of gravity, as a function of concentration. The suspension consists
of prolate spheroids with an aspect ratio of 100 aligned perpendicular to gravity.

angular speed is largest in suspensions where all fibres are aligned perpendicular to
gravity and smallest in ones where the fibres are aligned parallel to gravity. The results
for fibres aligned perpendicular to gravity are further analysed in figure 4, where we
have divided the rotations into the magnitudes of the angular velocities perpendicular
and parallel to gravity. If the rotations were purely random, these two components
would be equal. However, we see instead that the rotation of the fibres is composed
nearly entirely of angular velocities perpendicular to gravity, thus causing the fibres to
become more aligned with the gravitational vector. The combined results shown in
figures 3 and 4 suggest that the orientation distribution in a dilute sedimenting
suspension of fibres will evolve to favour particles aligned in the direction of gravity.
Such behaviour is seen in the dynamic point particle simulations discussed in §3 and
the experimental studies referenced therein.

3. Dynamic simulations of sedimentation

3.1. Introduction

In the simulations described in the preceding section, we assumed particular fibre
spatial and orientational distributions. However, as discussed in the Introduction,
these quantities will evolve in time and presumably reach steady-state values, which are
independent of the initial condition. Thus, we wish to perform dynamic simulations to
see how the particle spatial and orientation distributions evolve. As discussed by
Mackaplow (1995), integrating the Monte Carlo simulations forward in time is
computationally prohibitive. Additionally, since the finite box size affects particle
rotations (Appendix A) these effects may also cause inaccuracies in the suspension
evolution as a model for an unbound settling suspension.

A simplified method to study the dynamics of a sedimenting suspension is to
approximate the disturbance created by any fibre as that of a point force in the
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direction of gravity. In such ‘point particle ’ simulations, the effect of a fibre on the
translation, U !

i
, and rotation, dp!

i
}dt, of another fibre are given by

U !
i
¯ 0xx

rxr$
­

δ

rxr1[F, (3.1)

dp!
i

dt
¯Ω(x)[p

i
­λ§(δ®p

i
p
i
)[E(x)[p

i
, (3.2)

where
λ§3 (r#

e
®1)}(r#

e
­1), (3.3)

Ω(x)3 "

#
[(¡H[x][F )­(¡H[x][F )T], (3.4)

E(x)3 "

#
[(¡H[x][F )®(¡H[x][F )T] ; (3.5)

x is the vector between fibre positions and r
e
is the effective fibre aspect ratio, which

is in turn related to the rotation rate of a fibre in a linear flow field (Bretherton 1962;
Anczurowski & Mason 1968). The latter is equal to the true aspect ratio, A, for
spheroids and 1.29A}(lnA)"/# for cylinders (Cox 1970). The benefits of using point
particle simulations are : (i) They only require O(N #) evaluations of S

P
(x) per time step,

which is more than 100 times fewer than the number required for the Monte Carlo
simulations. (ii) There is no longer a coupling between the fibre force distributions and
their velocities and angular velocities. Thus instead of having to solve a coupled set of
integral equations at each time step, we have the computationally less intensive task of
integrating a coupled set of ordinary differential equations forward in time. (iii) As
shown in Appendix A, since rotational finite box size effects will only be due to particle
dipoles and higher-order multipoles, they will not affect these simulations. The details
of the simulation algorithm and the range of particle concentration over which they
may be good approximations to fibre suspensions are discussed below.

3.2. Mathematical formulation of the problem

If we assume g¯ rgr3, then the non-dimensionalized ordinary differential equations
governing the velocity and rotation of sedimenting point particles are
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and R
i
is the coordinate of the centre of fibre i. ¡H

P
(x)[3 was evaluated using an

algorithm developed by Mackaplow (1995). Since point particles have no dipoles, they
make no contribution to the suspension stress. Thus, η¯ η

!
in equation (2.6), which

is used to correct each particle velocity at every time step.
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F 5. Comparison of the point particle and full Monte Carlo simulations for the sedimentation
of an isotropic suspension of spheroids (A¯ 100) as a function of concentration. (a) Mean
sedimentation speed, (b) velocity variance.

Point particle simulations neglect the effect of particle shape and aspect ratio on
hydrodynamic interactions. However, the effect of these two parameters on the isolated
fibre rotational and translational mobility tensors are fully retained. This is done by
choosing values of λ, λ«, and λ§, using equations (1.4) and (3.3), that correspond to the
particles we wish to simulate.

In a real suspension, when two fibres approach each other to within a distance of
O(l ), there will generally be some mutual enhancement of their sedimentation speeds.
This will increase with decreasing separation distance and, in the limit of two fibres
aligned and touching end to end, the enhancement approaches a factor of 2. Higher-
order multipoles are important to accurately capture the effect of such interactions. In
contrast, when two point particles approach within a distance i l of each other, the
effect of their mutual interactions will be to create aphysically large sedimentation
velocities that diverge as 1}r. To prevent this aphysical behaviour in our simulations,
when calculating interactions between particles separated by distances ! l we normalize
the length of the interparticle separation vector to be l. This is admittedly a somewhat
arbitrary choice, motivated by the fact that higher-order multipole interactions should
become important when the interparticle separation distance is O(l ). Additionally, the
‘cut off’ distance for the interactions must not be less than approximately l}ln 2A, since
below such separations distances the point interactions predict more than a doubling
of the sedimentation speed of the two interacting fibres. Nonetheless, as discussed
below, at the concentrations we simulate, the majority of the fibres do not initially have
other fibres within a distance of l and this algorithm is shown to be reasonable
approximation to the full Monte Carlo simulations.

By considering only leading-order hydrodynamic interactions in our point particle
simulations, an error of O(h}l ), or equivalently, O(nl $)"/$, in introduced. To get a more
quantitative estimate of this error, figure 5 compares the sedimentation behaviour
predicted by the point particle simulations at particular initial particle configurations
to that predicted by the Monte Carlo simulations. 100 bodies per cubic unit cell were
used, so the unit cell sizes ranged from 1000l to 4.6l. All results were corrected for finite
box size effects. We see that the mean sedimentation speed and velocity variance
predicted by the point particle simulations agree with the results of the more accurate
Monte Carlo simulations to within 3% for suspension concentrations up to nl $¯ 0.1.

In figure 6 we have plotted the mean fibre angular speed from the point particle
simulations at a suspension concentration of nl $¯ 0.1. It is approximately independent
of box size. This supports our conclusion that fibre angular velocities are not affected
by finite box size effects in these simulations.

Dynamic simulations were performed by integrating equations (3.6), modified using
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equation (2.6) to correct for finite size effects, and (3.7) forward in time using a
Runge–Kutta algorithm. 100 particles were allowed to sediment for 120 ‘Stokes times’,
where one Stokes time is defined as the time it would take a non-interacting, isotropic
suspension to sediment one fibre half-length, based on the mean suspension velocity.
When, during the course of a simulation, a particle left the periodic box, it was replaced
by its particular periodic extension that enters the box at the same instant.

3.3. Results and discussion

The following simulations all used 100 particles in cubic unit cells. The fibres were
initially homogeneously distributed and isotropically oriented. For each suspension
concentration examined, simulations were performed for 10 different initial con-
figurations. After verifying that each of the configurations evolved in the same
qualitative way, the results were averaged.

3.3.1. Prolate spheroids: aspect ratio¯ 100; nl $¯ 0.1

We first simulated a suspension of prolate spheroids with an aspect ratio of 100 at
a concentration of nl $¯ 0.1. Figure 7 shows the mean second moment of the
orientation vector in the direction of gravity, ©p

$
p
$
ª, as a function of time. As the
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suspension sediments, ©p
$
p
$
ª increases from the isotropic value, 1}3, and after about

60 Stokes times, reaches a steady-state value of approximately 0.55. The seemingly
random variation with time about the steady state value after this can be attributed to
the fact that our system contains a finite number of particles and that the individual
particles undergo flipping motions, as will be discussed in §3.3.2.

To better quantify the orientation distribution, figure 8 shows the time evolution of
a histogram of fibre orientations. The bins of the histogram are five equal-sized ranges
of the angle with respect to gravity. The bin values are normalized by the number of
fibres that would be in each if the suspension were isotropic (100¬(cos(θ

"
)®cos(θ

#
)),

where θ
"
and θ

#
are the ranges of the histogram bin and θ

"
! θ

#
). As with ©p

$
p
$
ª, the

distribution reaches a steady state after approximately 60 Stokes times. At steady state,
the number of fibres in region five, the region containing fibres most aligned with
gravity, has increased by a factor of four to five over that in an isotropic distribution.
This corresponds to 20% to 25% of all fibre orientations being in this range. The
number of fibres in region four, the second most aligned region, increased by about a
factor of two. The other three regions show a depletion of fibres. These results are
consistent with the results in figure 7.
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F 9. Mean sedimentation speed as a function of time. Initially isotropic suspension of
prolate spheroids : A¯ 100, nl $¯ 0.1.

Figure 9 shows the mean sedimentation speed in the suspension, relative to that in
a non-interacting isotropic suspension, as a function of time. The speed increases
linearly with time, starting at about one and reaching approximately five after 120
Stokes times (a few simulations were run for 200 Stokes times and showed a continued
linear increase of the mean speed with time). Even if all fibres in the sedimenting
suspension aligned with gravity, but were otherwise homogeneously distributed in
space, this could only account for an increase in the mean sedimentation speed by a
factor of about 1.4. Thus, most of the increase must be due to the development of
spatial inhomogeneities. This inference is supported by figure 10, where we have
displayed the transient mean fibre closest approach distance. This is calculated by
sequentially choosing each fibre in the unit cell as the ‘ test fibre’, and for each test fibre
determining the smallest of the centre-to-centre distances between it and all of the other
fibres in the unit cell and all adjacent ones. These distances are then arithmetically
averaged. In figure 10 we see that the mean fibre centre closest approach distance
decreases by nearly a factor of two, from 1.2l to 0.7l, throughout the course of the
simulations. This suggests that particle clustering is leading to the increased
sedimentation speed.

To study the development of the fibre spatial configuration in more detail, we have
shown the evolution of the three-dimensional, two-point centre-of-mass distribution
function in figure 11. By definition, if a fibre is centred at the origin of the coordinate
system shown, this function tells us the probability of another fibre being at any other
position. Because of the periodicity of our system, we have limited the size of our
domain to approximately one periodic box (the periodic box is a cube with sides of
10l ). The function is normalized such that for a homogeneous distribution it will be
unity everywhere. To facilitate data interpretation, regions where the function is less
than unity have been rendered transparent.

Initially, within our accuracy of mapping the three-dimensional distribution, the
suspension is homogeneous. As the suspension sediments, the fibres cluster into long
streamers in the direction of gravity. This structure is quite evident after about 50
Stokes times. Throughout the course of the simulation, the structure becomes more
defined and the density within the streamer, particularly at the origin, continues to
increase. The occurrence of anisotropic particle clustering, with gravity being the
preferred direction, was predicted by Koch & Shaqfeh (1989). It causes both the
particles and fluid to be rapidly convected downward in regions of high particle
density.

The monotonic decay of the distribution away from the origin in figure 11 shows that
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F 10. Mean fibre centre closest approach distance in a sedimenting suspension as a function
of time. Initially isotropic suspension of prolate spheroids : A¯ 100, nl $¯ 0.1.

a single streamer forms. This suggests that the size of the periodic box is choosing the
length scale of the inhomogeneities, l

inhomog
. Under such conditions, one would expect

that our simulated results would underestimate the time it would take to form
streamers in unbounded suspensions, and therefore the rate of increase in the mean
suspension speed would also be smaller for unbounded systems. Additionally, the
simulated inhomogeneity in the gravitational direction is longer than the size of the
periodic box. Thus, the interactions of these streamers across boxes in the vertical
direction also artificially increases the sedimentation speed. These effects could have
been reduced by choosing a rectangular unit cell that was shorter in the direction of
gravity than the other two directions. Unfortunately, this would have had the
detrimental aphysical effect of causing the dense regions in periodic boxes to begin
overlapping in the direction of gravity more rapidly. In contrast, elongating the unit
cell in the direction of gravity would have reduced the latter effect, but exacerbated the
problem of the periodic box choosing the interstreamer length scale, i.e. forcing an even
smaller length scale onto the system.

Recall that Koch & Shaqfeh (1989) predicted that l
inhomog

CO(nl )−"/#. For our
simulations (nl )−"/#¯ 3l. Since the 10l box seems to be choosing the length scale of the
inhomogeneity, this suggests that the theory underpredicts the interstreamer spacing.
However, since 10l and 3l are the same order, to better evaluate the accuracy of the
Koch & Shaqfeh (1989) theory to predict l

imhomog
we would need to use a much larger

unit cell. Unfortunately, since the number of particles required per unit cell, and thus
the required computational effort, increases as N $, this is not computationally feasible.

Since particle clustering is occurring, we need to examine how well the point particle
approximation will capture the effect of particle interactions throughout the course
of the simulation. During the simulation, the average closest approach distance
between fibre centres, l

clapp
, decreases by nearly a factor of two. By noting that

l
clapp

C (nl $)"/$, we see that this is equivalent to the local concentration in the vicinity
of a fibre increasing to approximately nl $¯ 0.8. Figure 5 shows that at such
concentrations point particle simulations overestimate the effect of interactions on
particle mobilities. However, even though it is possible that the quantitative accuracy
of the simulations decreases as they progress in time, this does not invalidate our basic
findings that hydrodynamic interactions result in preferred fibre alignment in the
direction of gravity, streamer formation, and increased sedimentation speeds.

As a check to see if the finite box size corrections were producing the observed fibre
clustering, simulations were also executed in which no such corrections were made to
fibre velocities. This did not affect the development of the suspension structure.
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F 11. Time evolution of the three-dimensional, two-point fibre centre of mass distribution
function in a sedimenting suspension. For a homogeneous distribution, it will be unity everywhere.
Values less than unity are rendered transparent ; values greater than 10 are treated as 10. Initially
isotropic suspension of prolate spheroids : A¯ 100, nl $¯ 0.1. Time is in units of Stokes times.
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figure 8.

3.3.2. Slender cylinders: aspect ratio¯ 9.4; nl $¯ 0.061

In order to study how sensitive the simulation results are to the system parameters,
we repeated them using suspensions of slender cylinders having aspect ratios of 9.4 at
a concentration of nl $¯ 0.061. Figures 12–15 show the time evolution of ©p

$
p
$
ª, the

orientation distribution histogram, the mean sedimentation speed, and the average
fibre centre closest approach distance, respectively. The results are nearly identical to
those in §3.3.1. The only exceptions are that the rate of increase in the mean
sedimentation speed is about 20% slower and the mean particle closest approach
distance is larger. This is due to the suspension concentration being more dilute, so it
takes longer for particle clustering to occur. The results from these two sets of
simulations suggest that the evolution of the particle positional and orientational
configurations in a sedimenting suspension of fibres is relatively insensitive to the
details of the body shape and aspect ratio.

Herzhaft et al. (1996) experimentally tracked the position and orientation of
individual glass fibres (aspect ratio¯ 10.6³2.5) in a dilute (nl $¯ 0.09³0.03)
sedimenting suspension. Due to vigorous agitation, the initial orientation distribution
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was assumed to be isotropic, and this was checked by examining the initial conditions
in a few runs. In figure 16 we have compared the steady-state orientation distribution
in a plane parallel to gravity to the predictions of our simulations. Both show the fibres
preferentially oriented in the direction of gravity, although the degree of anisotropy is
less in the simulations than in the experiments. The polydispersity of the experimental
suspensions may be a factor in this quantitative discrepancy. Herzhaft et al. (1996) also
showed that although the orientation distribution may reach a steady state, individual
fibre orientations do not. Rather, a fibre spends most of the time in one of the two
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orientations aligned with gravity, while occasionally flipping between them. In figure
17 we plot the simulated, transient fibre orientation time for five randomly selected
fibres. The rotation rates appear to be correlated with the instantaneous orientations.
In particular, whereas fibres nearly always rapidly rotate through orientations
perpendicular to gravity, they often linger in orientations nearly aligned with gravity.
This is most evident in parts (c) and (d ). This flipping motion is somewhat similar to
fibres in a shear flow rotating in Jeffrey orbits. Indeed, the clustering of sedimenting
fibres into vertical streamers leads to a shear flow on the length scales of the spatial
inhomogeneities – and suggests that this is the mechanism that produces the flipping of
fibres and thus the anisotropic orientation distribution. We also note that the time scale
for flipping is much shorter in the simulations than in the experiments. The reason for
this will be discussed shortly.

Also consistent with our simulations, Herzhaft et al. (1996) observed fibre clustering
and an increase in the mean sedimentation speed beyond that which could be
attributed to fibre alignment. However, unlike in our simulations, both eventually
reached steady states that were less dramatic than seen in the simulations. We believe
this discrepancy is because in our simulations: (i) the box size appears to choose an
artificially small interstreamer spacing, thus allowing the fibre clusters to be larger and
grow more rapidly, and (ii) we neglect solid body contacts, and thus the rotational and
translational steric hindrances which will inhibit the continual densification of clusters.
It is also possible that higher-order multipole interfibre hydrodynamic interactions
may suppress further clustering as fibres become very close. As a result, the spatially
periodic shear flow that develops along with the streamer formation will be stronger in
the simulations than in the experiments. Thus, fibres flip more rapidly in the former
than the latter. However, despite some quantitative discrepancies with the experimental
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data, the key point is that the numerical simulation successfully predicted the steady-
state fibre orientation distribution, fibre flipping, the development of spatial
inhomogeneities, and substantial enhancement of the mean suspension sedimentation
speed.

4. Conclusions

The understanding of the sedimentation behaviour of fibre suspensions under
viscous flow conditions requires answering two important, coupled questions: (i) How
does the orientation and spatial distribution of the particles evolve, and what steady-
state distributions are achieved, and (ii) for a given spatial and orientation distribution,
how do interparticle hydrodynamic interactions affect the sedimentation speed of the
particles? By a slight decoupling of the two problems, we have been able to use two
different types of numerical simulations to gain detailed qualitative and quantitative
information about the sedimentation behaviour of fibre suspensions.

In §2, we focused on answering the latter of these questions – for a given distribution
of fibres, what is the effect of hydrodynamic interactions on the sedimentation
behaviour. Particular orientation and spatial distributions of the fibres were assumed.
We then determined the effect of the hydrodynamic interactions between fibres using
Monte Carlo simulations in which fibres were represented as line distributions of
singularities. This problem formulation allowed us to study suspension concentrations
up to and including those in the semidilute regime. For homogeneous suspensions with
isotropic orientation distributions, we found that the effect of fibre interactions was to
hinder the mean sedimentation speed in the suspension. This hindrance was a linear
function of suspension concentration and was surprisingly well predicted by a dilute
theory that only considered two-body interactions. Our numerical simulations showed
excellent agreement with experimentally determined hindrance functions for non-dilute
suspensions. However, the experimental study only tracked the fall of the sediment
interface, did not measure the fibre orientation distribution, and operated at
concentrations slightly above those where we expect our simulations to be able to fully
capture the effect of interfibre interactions. Thus, although we believe the qualitative
agreement suggests we are capturing the basic physics of the sedimenting system, the
excellent quantitative agreement must be considered somewhat fortuitous.

In §3 we focused on answering the first of the two questions posed – how will the
orientation and spatial distributions of fibres in a sedimenting suspension evolve? We
did this by performing dynamic point particle simulations. The treatment of
hydrodynamic interactions is less exact than in the Monte Carlo simulations, but still
accurate for dilute suspensions. Our simulations predict that a dilute sedimenting
suspension will achieve a steady-state orientation distribution that favours particle
alignment in the direction of gravity. The distribution of fibres in the suspension
becomes inhomogeneous, as fibres cluster into long streamers in the direction of
gravity. This leads to a strong downward convection of fluid and particles in the
streamers, thus producing enhanced mean particle sedimentation speeds. Such streamer
formation was predicted theoretically by Koch & Shaqfeh (1989). These streamers
drive a shear flow, on the length scale of the suspension inhomogeneities. This produces
a flipping motion of the fibres (similar to the Jeffrey orbits of a fibre in a shear flow)
where the preferred fibre orientation after the ‘flips ’ is aligned with gravity. All of the
above observations were in good agreement with the experimental data of Herzhaft et
al. (1996). Our simulations results also show little sensitivity to the fibre shape and
aspect ratio, within the limited range examined.



172 M. B. Mackaplow and E. S. G. Shaqfeh

It has been observed that in suspensions containing particles of different mobilities,
such as spheres of different sizes or densities, a similar type of streamer formation may
occur at concentrations above a critical value, usually about 10% (Davis & Acrivos
1985). The denser or larger particles will gather into regions of large downward fluid
convection and the smaller or lighter particles will collect in regions of fluid upwelling.
The particles rapidly segregate into two separate regions at different heights, and
thereafter sedimentation progresses with the two regions remaining homogeneous. Our
dynamic simulations suggest that suspension polydispersity is not a necessary condition
for such streamer formation to happen. It may also occur in a monodisperse
suspension if particle mobility is a strong function of orientation. Unlike the case of
polydisperse suspensions of spheres, the instability we examine occurs at very low
concentrations, nl $!O(1).

As noted previously, since many previous experimental studies of fibre sedimentation
focused on measuring the fall of the sediment interface (Anselmet 1989; Kumar &
Ramarao 1991; Turney et al. 1995), their relevance to understanding the mean
sedimentation speed of fibres in suspension must be viewed with some skepticism.
However, for nl $&O(1), all of the studies found that at the steady state, the mean fall
speeds were greatly hindered relative to the dilute theory. This suggests that regardless
of whether particle clustering is occurring or not, at such concentrations the net effect
of interparticle hydrodynamic interactions is to hinder the mean particle sedimentation
speed. Further study of fibre suspensions at such concentrations is needed.

The authors would like to acknowledge support for this work from both a
Presidential Young Investigator Award, Grant No. CTS-90557284, and a fellowship
from the David and Lucile Packard Foundation, to E.S.G.S. as well as a Merck
Fellowship to M.B.M. Computer resources (CRAY C-90) were supplied by the San
Diego Supercomputer Center.

Appendix A. Effects due to the finite size of the periodic box

A.1. Translational mobility effects: effect of box shape and analytic corrections

A.1.1. Effect of periodic box shape

By considering how the velocity of a fibre is affected by its periodic extensions in
adjacent unit cells, we can determine a cell shape that will minimize finite box size
effects. To begin, the disturbance velocity created by a single fibre, equation (2.1), can
be written as a multipole expansion about the centre of the fibre, x

i
, which we choose

to be the origin. (Note that in this Appendix all equations will be presented using
indicial notation to simplify the results). The expansion becomes
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where h(s) depends only on the shape of the fibre and satisfies
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and vanish in the limit of an infinitely dilute suspension.
Next, we consider the effect of an imposed flow field, u!
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), on the velocity of a fibre,
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We can combine equation (A1) and its derivatives with equation (A5) to determine
how the velocity of a fibre is affected by one of its periodic extensions, yielding
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Because of the symmetry of a periodic system, we have neglected interactions that are
odd functions of x

i
. Additionally, the effect of the adverse pressure gradient necessary

for renormalization can be neglected, since it just creates a uniform flow whose strength
depends only on fibre concentration. Thus, it does not affect our comparison of how
the velocity of a fibre will be affected by its periodic extensions relative to that in other
unit cells with the same volume but different shapes.

Equation (A6) implies that in the limit of hj l, where h is the characteristic cell size,
finite box size effects can be minimized by making the cell twice as long in the direction
of gravity than perpendicular to it. Unfortunately, it also shows that such effects decay
very slowly, as 1}h, with increasing cell size (Phillips et al. 1988). Thus, we proceed with
developing analytic corrections for finite box size effects.

A.1.2. Analytic corrections for finite box size effects on particle mobilities

Spheres. In order to determine the scaling of the finite box size effects on the mobility
of a sedimenting suspension of spheres, Phillips et al. (1988) proposed modelling the
system as a lattice of volume fraction φ}N sedimenting superimposed on a random,
sedimenting suspension of volume fraction φ(1®1}N ). This yields the proper N−"/$

scaling of the finite box size effects. It also suggests that they can be corrected for by
subtracting out the hindrance caused by the lattice of volume fraction φ}N using
analytic formulas for the mobility of sedimenting arrays (the mobility effect of the
random component of the suspension having concentration φ(1®1}N ), not φ, is
generally much smaller and can be neglected). However, this model is an approximation
since the suspension of volume fraction φ(1®1}N ) is actually not random, but ordered
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on the length scale of the unit cell. Ladd (1990), numerical simulating suspensions of
spheres, showed that the above correction did not yield sedimentation velocities that
were independent of box size. However, by a slight modification to this algorithm, he
was able to achieve box-size-independent results :

µ¯µ(N )­0η!

η 1 0
µ

µ
!

1µ
corr

(N ), (A 7)

where µ is the true particle mobility, µ
!
the single particle mobility in infinite fluid, µ(N )

the mobility measured in an N-particle periodic system, µ
periodic

the mobility of
a periodic array having the same cell size as the N-particle periodic system and
µ
corr

(N )3µ
!
®µ

periodic
; η and η

!
are the suspension and pure fluid viscosities,

respectively. His modification included adding of the viscosity and mobility ratios. The
ratio of viscosities implies that the interactions between a fibre and its periodic
extensions are dampened by the extra suspension stress that the other particles create ;
the ratio of mobilities implies that any mobility hindrances must be scaled relative to
the true particle mobility, not that of an isolated particle. Based on the proven success
of equation (A7), our approach is to develop mathematical generalizations of it for
fibre suspensions. Since a force on an isolated fibre may induce motion in directions
other than that of the applied force, fibre mobility must be treated as a tensor.
Additionally, a scalar viscosity cannot generally be used to relate the fluid stress and
strain tensors. We examine three different physical systems, in order of increasing
complexity.

Fibres: dilute suspensions (nl $!O(1)). In dilute suspensions, the O(nl $) effect of the
particles on the suspension stress is, by definition, small. Thus, we neglect the η

!
}η term

in equation (A7). Under such conditions, two possible generalizations of equation
(A7) to fibre suspensions are
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The superscript (M ) designates a particular fibre. If we assume gW
i
¯ δ

i$
, and make use

of an expression for the mobility of a simple cubic periodic array of fibres developed
in Appendix B, then equation (A8) becomes
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where a3 1.7601 (simple cubic lattice), h is the size of the periodic box, m3 (%
$
π)"/$, C

"
,

C
#
are related to fibre shape (equation (1.4)) and U

i
(N ) and U

i
are the measured and

true particle velocities, respectively. As a test of the validity of any proposed finite box
size correction, ‘correcting’ the mobility of a sedimenting fibre lattice for finite box size
effects should yield the mobility of an isolated fibre. This is the case for equation
(A10), but not for a similar correction developed using equation (A9). Therefore, we
will proceed using (A10).



A numerical study of the sedimentation of fibre suspensions 175

0.90

0 0.05 0.10

Inverse periodic box size l/h
0.15 0.20

0.95

1.00

1.05

M
ea

n 
sp

ee
d 

di
lu

te
 th

eo
ry

Average sedimentation speed:
Results corrected using equation (2.6)
No correction

F 18. Mean sedimentation speed of a suspension, nl $¯ 0.1, of prolate spheroids with an aspect
ratio of 100 as a function of inverse periodic box size. The suspension is isotropic and the periodic
boxes are cubic. Each data point is an average of 10 simulations. Shown are simulation results that
are uncorrected for finite box size effects and those corrected using equation (2.6). The dilute theory
corrected for two-body interactions, equations (2.8), predicts a value of 0.99.

In figure 18 we have plotted the mean simulated fibre sedimentation speed in a dilute
suspension, both corrected for finite box size effects using equation (A10) and
uncorrected, as a function of cell size. (Varying the latter over a sufficiently large range
required using nearly 1000 particles}periodic box. This could only be done using the
less computationally intensive ‘point particle ’ algorithm. However, at the dilute
concentration considered, nl $¯ 0.1, these are an excellent approximation to the full
simulations (figure 5).) It shows that simulation results uncorrected for finite box size
effects monotonically increase with increasing cell size. In contrast, results corrected by
equation (A10) show no consistent variation with box size for periodic box sizes" 10l.
The fact that this converged value, 0.98³0.01, is approximately the same as that
predicted by the dilute theory corrected for two-body interactions (equation (2.8)),
0.99, suggests that for such box sizes equation (A10) accurately corrects for finite box
size effects.

Fibres: non-dilute, isotropic suspensions. In non-dilute suspensions, we may not neglect
the effect of the fibres on the suspension stress. However, for the special case of
isotropic fibre orientation distributions, it may be characterized by a scalar effective
viscosity. If we assume that this enhanced viscosity serves to screen finite box size
effects in the same way it does in a suspension of spheres (equation (A7)), then
equation (A10) becomes
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Since, by definition, a point particle has no dipole, it makes no contribution to the
suspension stress. Therefore, we cannot test this proposed correction using our point
particle simulations.

Fibres: Non-dilute, anisotropic suspensions. In a non-dilute, anisotropic suspension,
stress and strain are not related by a scalar viscosity, but rather by a fourth order
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tensor. Under such conditions, it is not clear how the term (η
!
}η) in equation (A7)

should be treated. Although we will not consider this case here, one possible approach,
which reduces to equation (A11) for isotropic suspensions, is shown in detail by
Mackaplow (1995).

A.2. Rotational mobility effects: effect of box shape

We now wish to estimate what periodic box shapes will minimize finite box size effects
on fibre rotation. To leading order in slender-body theory, the rotation rate of a fibre
can be related to the imposed flow field by
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Using an analysis similar to that performed in §A.1, we can show that
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depends on the particular interactions a fibre experiences and, on average, has no

preferred directions. Equations (A13) implies that in the limit of (characteristic box
size)j l, for a given periodic box volume, finite box size effects can be minimized by
elongating the periodic box in the direction of preferred fibre alignment. The 1}r$ decay
of the interactions (Phillips et al. 1988) suggests that finite box effects will rapidly
decrease with increasing box size. This is important, as we know of no theoretical way
to correct for these effects.

Appendix B. Mobility of a periodic array of fibres

The translational mobility tensor of any periodic array may be written as

µ¯µ
o
®∆µ, (B 1)

where µ
o

is the mobility of an isolated particle, and ∆µ is the hindrance due to the
interactions with all of the other particles in the array. The latter is a function of lattice
type, size, and particle orientation. By analogy, for a given gravitational body force,
we may write

U¯U
o
®∆U, (B 2)

where U is the particle translational velocity.
Let us consider two physical systems: (a) a periodic array of spheres with radius l,

and (b) a periodic array of fibres with half-length l, with identical lattice sizes and
structures. The spheres and fibres have uniform, identical densities. By definition

∆U
sphere

¯ ρV
sphere

∆µ
sphere

[g, (B 3)

∆U
fibre

¯ ρV
fibre

∆µ
fibre

[g, (B 4)

where V
sphere

and V
fibre

are the volume of an individual sphere and fibre, respectively.
In the limit of hj l, as seen from equation (A6), the effect of any sedimenting particle
on the velocity of another body is independent of particle shape. It depends only on
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the total body force, F, the particle exerts on the fluid. Likewise, the adverse pressure
gradient introduced via renormalization also is proportional to the net force the
particle exerts on the fluid. Thus, ∆µ

sphere
and ∆µ

fibre
are related by
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Combining equations (B 3), (B 4), and (B 5) yields
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Hasimoto (1959) determined ∆µ
sphere

for SC, FCC, and BCC arrays of spheres
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where φ
s
is the volume fraction of spheres and a equals 1.760, 1.791, and 1.791 for SC,

BCC, and FCC lattices, respectively. Equation (B 6) allows us to apply equation (B 7)
to determining µ

fibre
. Combining equation (1.4), (B 1), (B 6), and (B 7) yields
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where m3 (4π}3)"/$ and the latter term is ∆µ
fibre

.
We test the accuracy of equation (B 8) by considering a sedimenting simple cubic

array of spheroids having an aspect ratio of 100. The planes of the lattice lie along the
Cartesian coordinate axes and gravity is in the 3-direction. We compare theoretical
predictions of ∆µ

fibre
to numerical simulations using the algorithm described in §2 with

one particle}periodic box. Since only lattices having a closest approach between
particlesj b are considered, the simulations will be highly accurate. ∆µ

fibre
depends on

lattice size, h, fibre orientation relative to gravity, φ, and projected angle in the (1, 2)-
plane, θ (θ is defined such that at θ¯ 0, p

"
¯ 0 and at θ¯π}2, p

#
¯ 0). However, our

simulations have shown that the variation with θ is much weaker than with h or φ.
Thus, we average over the variation with θ, e.g. µh (φ, h)¯ (1}2π) !µ(φ, θ, h) dθ. For the
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values are non-dimensionalized by 1}(8πη
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l ).

Figure 19 shows that the predictions of the sedimentation mobility hindrance,
∆µ

fibre,$$
, by equation (B 8) are in excellent agreement with the numerical simulations

for h as small as 2.5l. To get a more quantitative measure of the accuracy of the theory,
in figure 20 we show the error in the theory normalized by the result for an isolated
particle, e.g. (∆µ

$$,theory
®∆µ

$$,simulation
)}µ

fibre,$$
r
nl

$
=!

. The error introduced by using
equation (B 8) is always less than 5%. Figure 21 shows a similar comparison for drift
velocities, ∆µ

"$,simulation
}µ

fibre,"$
r
nl

$
=!

(note that ∆µ
"$

and ∆µ
#$

are related by the
symmetry of the system, ∆µ

"$
(θ)¯ (∆µ

#$
(π}2®θ), so only one of them needs to be

considered). For h as small 2.5l, the maximum error in equation (B 8) is always less
than 10%. In conclusion, by making use of the theoretical expression for the mobility
of a periodic array of spheres (Hasimoto 1959), we have developed a two-term
expansion for the mobility of cubic periodic arrays of fibres. Although the formula is
developed for hj l, we show that it gives highly accurate results for cell sizes as small
as hCO(l ).
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Appendix C. The first effect of hydrodynamic interactions on the
sedimentation velocity of a dilute, isotropic suspension of fibres

In this Appendix, we develop the correction term (including the first effects of
hydrodynamic interactions) presented in (2.8) for the average sedimentation speed of
a dilute, isotropic homogeneous suspension of sedimenting fibres. The calculation will
make use of both the fact that the suspensions is dilute (so only terms up to O(nl $) will
be retained, with nl $i 1) and that reflection interactions among fibres are ‘weak’ with
each reflection being smaller by a factor of 1}ln(2A) for Aj 1. Thus terms up to
O(nl $}ln(2A)) will be retained which represent the first non-zero average effect of two-
particle interactions and comes from the so-called ‘first reflection’ interaction. We shall
discuss this in detail below.

We begin by noting that the disturbance velocity created by a single slender fibre in
an unbounded quiescent fluid under Stokes’ flow conditions, can be written according
to (2.1) as an integral of Stokeslets using slender-body theory, namely

�D(x)¯&F(s)[H(x®x
c
®sp) ds¬(1­O(b}h)), (C 1)

where �D is the disturbance velocity, H is the Oseen interaction tensor, and the
remaining notation is described in §2.1. An approximation for the average disturbance
velocity created by a fibre in a random, isotropic suspension of fibres can be written if
we use the approximate averaged Green’s function for the medium which was derived
by Shaqfeh & Fredrickson (1990). Note that this Green’s function does not include all
multiparticle interactions but includes sums of infinite subclasses of these interactions
as described in the appropriate reference (Shaqfeh & Fredrickson 1990) and referred
to below. We then have

�D(x)E&F(s)[G(x®x
c
®sp) ds, (C 2)

where G is the Shaqfeh–Fredrickson Green’s function for an isotropic suspension
of slender fibres (Shaqfeh & Fredrickson 1990). The Fourier transform (indicated by
the # ) of this function is given by the expression (Shaqfeh & Fredrickson 1990)

Gq ¯
δ®kk}k#

µk#®nQ(kl )
, (C 3)

Q(kl )¯
πµl

ln(2A) 0&
"

−"

dx([ j#
!
(kxl )®1] (1®x#)­2[3j#

"
(kxl )­j#

!
(kxl )®1] (1­x#)), (C 4)

where k is the wavenumber of the transform, k¯ rkr, n is the number density of the
fibres, j

!
and j

"
are the spherical Bessel functions of zero and first order respectively

(Shaqfeh & Fredrickson 1990). Note that (C 2) includes the disturbance velocity
created by the fibre whose centre is at x

c
in the viscous fluid (i.e. that given by (C1))

and also the disturbance velocities created by the other fibres as a result of the
disturbance in (C1). Thus it includes an approximation for the reflected fields which is
the critical information necessary to calculate the correction to the sedimentation
velocity. This approximation for the average reflected velocity disturbance can be
written explicitly by subtracting (C1) from (C2) to yield

�reflected(x)E&F(s)[∆G(x®x
c
®sp) ds, (C 5)
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where ∆G¯G®H. The result given by (C5) is not an exact result for the reflected
field, but, it does contain the O(1}ln(2A)) approximation for the average first reflection
(cf. Shaqfeh & Fredrickson 1990). This is the information necessary to obtain the
leading-order asymptotic correction to the sedimentation velocity.

Note that these reflected fields correct the sedimentation velocity in a simple way,
since they act as an imposed solvent velocity on the fibre whose centre is at x

c
.

Throughout the remaining development we shall let x
c
¯ 0 without loss of generality

since the suspension is homogeneous. The correction to the sedimentation velocity for
the fibre centred at the origin with orientation p engendered by these reflected
disturbances is

U «¯
1

2l&
+l

−l

ds« �reflected(s«p)¯
1

2l&
+l

−l

ds«&dsF(s)[∆G(s«p®sp). (C 6)

Finally, if the orientations are isotropically distributed then to get the average
change in the sedimentation velocity we need to average over the orientation p of the
fibre at the origin. Thus we have

©U «ª¯
1

8πl&dp&+l

−l

ds« �reflected(s«p)¯
1

8πl&dp&+l

−l

ds«&+"
−"

dsF(s)[∆G(s«p®sp), (C 7)

where the orientation integral is over all orientations p.
To this point we have developed an approximation but we have not explicitly used

the facts that nl $i and 1}ln(2A)i 1. To do this we first take F to be the leading-order
force density in powers of 1}ln(2A). We thus obtain

FE
∆ρgV

p

2l
. (C 8)

Expanding ∆G in powers of nl $ we obtain

∆Gq E
nQ

µ#k%

[δ®kk}k#]. (C 9)

We then define a function, S(x), such that

S(x)¯ 1 if x¯ sp ; ®l% s% l

¯otherwise, (C 10)
and note that

Sq ¯ 2lj
!
(k[pl ). (C11)

Thus (C7), using (C8) and (C10), can be rewritten

©U «ª¯
∆ρgV

p

16πl # &dp&dx«&dxS(x«)S(x)∆G(x«®x). (C12)

Using the convolution theorem and (C9) we can rewrite the spatial integrals in terms
of a single integral over the wavenumber k

©U «ª¯
∆ρgV

p

4πl #(2π)$&dp&dkj#
!
(k[pl )

nQ

µ#k%

[δ®kk}k#]. (C 13)

Finally, we can measure all angles in the space p with respect to the k and thus
k[p¯kx. We can therefore integrate over the remaining angular coordinates which
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are not x. Simplifying the remaining integrals after these angular integrations, non-
dimensionalizing k with l, and substituting the definitions for Q(kl ), we obtain

©U «ª¯
∆ρgV

p

8µπl

nl $ I

ln(2A)
, (C 14)

where I is the integral defined

I¯
16

3 &
"

!

dx&"

!

dξ&
¢

!

dk
j#
!
(kx)

k#

([ j#
!
(ξk)®1] (1®ξ#)­2[3j#

"
(ξk)­j#

!
(ξk)®1] (1­ξ #)).

(C 15)

Numerically evaluating I we find IE®1.509… and with this result we have
reproduced the two-body theory stated in (2.8).

As derived above, this correction includes the first reflection interactions from all
second fibres approximated up to O(1}ln(2A)). However, one may wonder whether this
is in fact the leading-order correction to the sedimentation velocity from interparticle
interactions. There are two other candidates which are not obviously higher order in
either powers of nl $ (as all three-body and multi-body interactions would be) or powers
of 1}ln(2A) (as all multiple reflections would be). These possibilities are direct
interactions from a second body where the disturbance made by the second’s
sedimentation disturbs the velocity of our fibre at the origin and the related effect of
the excluded volume of the fibre at the origin causing ‘backflow’ of solvent through the
suspension. It is now well known that the ‘direct ’ effects of a second fibre must sum
to zero if the centre-of-mass probability of the second is uniform throughout space
(this is one of the original renormalizations of Batchelor 1972). However, the centre-
of-mass distribution (of the second particle) cannot be completely uniform throughout
space because the fibre at the origin excludes volume. For the case of spheres this
excluded volume causes a backflow through the suspension which creates the largest
contribution to the leading-order hindrance of the sedimentation velocity (Batchelor
1972). In the sedimentation of fibres, however, the excluded volume for fibres which are
isotropically oriented is O(nl #b) or O(nl $}A) (see for example, Doi & Edwards 1989)
because of the fact that the fibres are very thin. Thus the correction due to excluded
volume (and the backflow) is smaller by a factor of ln(A)}A and is negligible in the limit
as AU¢.
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